Stochastic Parameter Estimation of Non-Linear Systems

نویسنده

  • Marcello Vasta
چکیده

Many mechanical and structural systems respond dynamically to random environmental loads, such as wind, wave or earthquake forces. Examples include flexible buildings vibrating due to turbulent wind loading and offshore structures moving as a result of combining wave and wind loading. To assess the reliability of such structures it is important to predict their dynamic response, at the design stage. However, whilst mass and stiffness parameters in the governing equations of motion can usually be computed with some accuracy, damping parameters are normally not quantifiable by theoretical means. For example, in the case of ship rolling in waves the appropriate parametric form of damping is well established. However, the damping arises from a very complex fluid-structure interaction between the waves and the ship motion, involving three dimensional vortex shedding. Thus, a theoretical determination of the damping parameters by the use of computational fluid dynamics technique is impractical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering

The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ : dXt θα t β t Xt dt σ t dWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Fina...

متن کامل

Current Output Observer for Stochastic-Parameter Models and Application to Sensor Failure

In this paper, linear discrete-time systems with white stochastic parameters are considered. Most results on the optimal state estimation of linear discrete time systems with stochastic parameters rely strongly on the generalization of the one step prediction type Kalman filter to this type of systems. But it has been shown that the current output observer results in less estimation error as co...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

Phase II monitoring of multivariate simple linear profiles with estimated parameters

In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...

متن کامل

Stochastic Non-Parametric Frontier Analysis

In this paper we develop an approach that synthesizes the best features of the two main methods in the estimation of production efficiency. Specically, our approach first allows for statistical noise, similar to Stochastic frontier analysis, and second, it allows modeling multiple-inputs-multiple-outputs technologies without imposing parametric assumptions on production relationship, similar to...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001